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Abstract. We have numerically and analytically studied(ac+ dc)-driven Josephson-junction
arrays with a single vortex or with a single vortex–antivortex pair present. We find single-
vortex steps in the voltage versus current (I–V ) characteristics of the array. They correspond
microscopically to a single vortex phase-locked to move a fixed number of plaquettes per period
of the ac driving current. In underdamped arrays we find vortex motion period doubling on
the steps. We observe subharmonic steps in both underdamped and overdamped arrays. We
successfully compare these results with a phenomenological model of vortex motion with a
non-linear viscosity. TheI–V characteristic of an array with a vortex–antivortex pair displays
fractional voltage steps. A possible connection of these results to present-day experiments is
also discussed.

1. Introduction

The presence of giant Shapiro steps and giant fractional Shapiro steps in theI–V
characteristics of 2-D Josephson-junction arrays has attracted significant attention recently
[1–7]. These 2-D arrays may be of use as a source of coherent microwave radiation [8].
In a separate context the flux-flow dynamics of vortices has been studied [9–11]. The
reported experimental observation of ballistic vortex motion [12] has also stimulated further
theoretical and numerical investigations [13–17] of the mass and friction of a vortex in an
array. Until now these numerical investigations have focused on dc-driven vortices. In
this work we perform numerical simulations on Josephson-junction arrays, with only one
vortex or with a vortex–antivortex pair present in it, driven by a time-dependent current
i(t) = idc+ iac cos(2πνt). We calculate the voltageV versusidc (i.e., I–V ) characteristics.
We find harmonic and subharmonic single-vortex voltage steps and analyse the underlying
phase-locked vortex motion. A vortex–antivortex pair separated by a distance1x along the
direction of the injected external current phase-locks onto fractional voltage steps.

The arrays are 2-D lattices of superconducting islands (sites) connected by Josephson
junctions (bonds). The unit cells (plaquettes) of these lattices can be, for example, square
or triangular. The vortices are represented by eddy-current patterns about a plaquette. Here
we consider the classical regime defined byEJ � Ec = e2/2C, whereEJ is the Josephson
coupling energy andEc the charging energy of two islands,e the electron charge, andC
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the capacitance of a junction. In this regime quantum fluctuations are neglected, leaving the
phasesθ(r) of the Ginzburg–Landau order parameter on the islands as the only dynamical
variables.

In this case the array is well modelled by the resistively capacitively shunted junction
(RCSJ) model, defined by the total bond currenti(r, r′) between nearest-neighbour sitesr
andr′:

i(r, r′) = βcθ̈(r, r′)+ θ̇ (r, r′)+ sin[θ(r, r′)− 2πA(r, r′)] (1)

plus Kirchhoff’s current-conservation conditions at each site. Here the dots represent time
derivatives. The three contributions toi(r, r′) are the displacement, and the dissipative
and the superconducting currents, respectively. The phase difference across a junction
is θ(r, r′) ≡ θ(r) − θ(r′). The currents are expressed in units of the junction critical
current Ic; time is measured in units of the characteristic time 1/ωc = h̄/(2eRnIc), and
βc = (ωc/ωp)

2 is the Stewart–McCumber parameter [20], with the plasma frequencyωp
defined asω2

p = 2eIc/h̄C, and Rn is the junction’s normal-state resistance. The bond
frustration variableA(r, r′) is defined as the line integral of the vector potentialA:

A(r, r′) = 1

φ0

∫ r′

r

A · dl (2)

with the elementary quantum of fluxφ0 = h/2e. The frustration parameterf measures the
average flux piercing a plaquette, measured in units ofφ0.

The motivation for this paper is twofold: to study the dynamics of a few vortices in
an array, and to see whether the results can be generalized in order to explain dynamical
non-equilibrium states, like the axisymmetric coherent vortex state [6]. Here we deal mainly
with the analysis of single-vortex voltage steps. The motion of a vortex produces a Faraday
voltage across the array. In this paper we find three types of new step. First we find single-
vortex voltage steps. The voltageV on these steps is proportional to an integer multiplen

of the frequency of the ac drive:

V = nhν

2e
n = 0, 1, 2, . . .. (3)

In the following we will also consider natural units ¯h/2e = 1. Then the voltage is normalized
such that it corresponds to 2π times the number of jumps between plaquettes of the vortex
per time unit. This differs from another often-used normalization by a factorNy , the
number of junctions perpendicular to the direction of the current injection. On such a step
the motion of the single vortex is phase-locked to move an integer number of plaquettes
per period 1/ν. Next we find subharmonic single-vortex steps in theI–V characteristics of
both overdamped and underdamped arrays. On these steps the voltage is

V = n

m

hν

2e
n = 0, 1, 2, . . . m = 1, 2, . . .. (4)

The dynamics on these steps corresponds to the vortex movingn plaquettes inm periods.
Finally we simulate a vortex–antivortex pair and obtain the following steps:

V = nNy

m

hν

2e
n = 0, 1, 2, . . . m = 1, 2, . . .. (5)

Each vortex movesnNy/2 plaquettes everym periods.
These new steps should be contrasted with other types of step that arise in Josephson-

junction arrays. In single junctions, harmonic (V = nhν/2e) voltage steps are present
in both experimentally and numerically obtainedI–V characteristics [21]. These steps are
called single-junction Shapiro steps. On these steps the single junction hasn phase-slips per
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period 1/ν. In simulations of and experiments on (ac+ dc)-driven arrays, so-called giant
Shapiro steps have been observed [1–3]. On these steps theNxNy individual junctions
along the direction of the external current are all phase-locked on the same single-junction
Shapiro step, and one obtains

V = NxNy nhν
2e

n = 0, 1, 2, . . ..

The harmonic and subharmonic single-vortex voltage steps are therefore small in comparison
to the giant Shapiro steps. Subharmonic giant Shapiro steps are observed experimentally
[3] and in simulations [6, 7]. A particular example of these half-integer steps is found
in the axisymmetric coherent vortex states (ACVS). These stationary states correspond to
an oscillating pattern of vortex and antivortex streets, which arrange themselves at a well-
defined angle with respect to the current direction [6].

In studies of and experiments on (ac+ dc)-driven arrays, with an average rational
flux (p/q)φ0 piercing through each plaquette, giantfractional Shapiro steps were observed
[2, 4, 5]. On these steps the voltage is

V = NxNy

q

nhν

2e
n = 0, 1, 2, . . ..

An explanation for such steps has been proposed and verified in simulations [2, 4]: an
f = p/q array hasq degenerate ground states, consisting of vortex lattices, carried into
each other by translations. In one period of the driving current the vortex lattice moves
from one degenerate state to the next. Afterq periods every vortex has moved through the
whole array, generating the observed voltage.

This shows that there are two kinds of Shapiro step in Josephson-junction arrays. Those
based on the coherent phase-slips of all of the individual junctions in the array (giant Shapiro
steps) and those involving coherent oscillatory vortex motions (giant fractional Shapiro steps
and ACVS).

The approach of our study is to have only one vortex, which makes it is possible to
separate the generic effect of vortex motion from the effects of interaction between them.
One can systematically study the underlying microscopic dynamics of the phase-locked
vortex motion. Then by considering a vortex–antivortex pair one can study the effect of
interaction in its simplest form on the phase-locked states. The vortex dynamics on single-
vortex voltage steps has a number of new and interesting features, e.g. we observe vortex
motion with period doubling in underdamped arrays. The underlying microscopic vortex
motion repeats itself only after 2, 4, 8, or even 16 periods 1/ν, although the vortex still
moves, on average, a fixed number of plaquettes per period. In this paper we discuss how
these steps can observed experimentally in arrays with a low density of vortices.

Previous authors [9, 10, 17] have studied simple models of vortex motion. In these
models the vortex is described as a point particle of massM(βc) experiencing a certain
friction, and moving in a sinusoidal potential. In reference [17] we found that theI–V
characteristic of a dc-driven array in the vortex regime is well described by such a vortex
equation of motion in terms of the vortex coordinatey containing, instead of the usual linear
viscous force, a non-linear one:

M(βc)ÿ + A(βc)ẏ

1+ B(βc)|ẏ| + i0 sin 2πy = i. (6)

In this equationA(βc) andB(βc) are phenomenological parameters. This analysis is similar
in spirit to the description of long Josephson junctions in terms of the fluxon coordinates
[18]. An interesting question previously left unaddressed, and considered in this paper,
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is whether a phenomenological model for the vortex coordinate can still reproduce the
I–V characteristic of an (ac+ dc)-driven array. In this work we resolve this question
and we compare theI–V characteristic of an array with the result of equation (6) with a
time-dependent currenti = idc + iac cos 2πνt , and using the parametersM(βc), A(βc) and
B(βc) obtained for dc-driven arrays. The results of equation (6) and the simulations are in
reasonable agreement over a broad range of values of the frequency and the amplitude of the
ac drive. In other words the vortex experiences a non-linear friction in an (ac+ dc)-driven
array.

The outline of the paper is as follows. In section 2 we discuss the calculational algorithm
for computing theI–V characteristic. In section 3 we present theI–V characteristics
containing the harmonic and subharmonic single-vortex steps and discuss the possibility
of experimental verification. We then study subharmonic single-vortex voltage steps and
period-doubled vortex motion using the microscopic current distribution in the array as
a function of time. Finally we compare the result of equation (6) to those of theI–V
characteristics obtained from the Josephson-junction array simulations. In section 4 we
investigate the effects of interaction and discuss the vortex–antivortex voltage steps in the
I–V characteristic. In section 5 we present our conclusions.

Figure 1. The array geometry used in the simulations, illustrated with an 8×8 array. Junctions
are denoted as crossed bonds. Periodic boundary conditions are imposed in they-direction,
while the current biasib is applied along thex-direction.

2. Calculational approach

We numerically solve the equations of motion for a two-dimensional array. We show the
square lattice ofLx × Ly sites in figure 1. The sites are connected through Josephson
junctions, denoted by crosses. We use the RCSJ model of equation (1) to relate the current
i(r, r′) through the Josephson junction to the phase differenceθ(r, r′). We use periodic
boundary conditions (PBC) in they-direction, while the current is fed in and taken out
along thex-direction. This set of coupled non-linear differential equations can be integrated
efficiently using a fast-Fourier-transform algorithm [6, 22]. The array consists ofNx ×Ny
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Figure 2. I–V characteristics obtained from simulation of a 16× 32 array with the parameters:
iac = 0.10, ν = 1

25 andβc = 0 (continuous line);ν = 1
50 andβc = 5 (dotted line); andν = 1

50
andβc = 20 (chain line). The voltage in natural units is normalized byω = 2πν. The inset
contains a close-up of theβc = 20 curve, with an addedI–V branch showing hysteresis.

plaquettes (Nx = Lx − 1 andNy = Ly). The vorticityn(R) is defined as

2πn(R) = 2πf +
∑
P(R)

(θ(r, r′)− 2πA(r, r′)). (7)

HereP(R) denotes an anticlockwise sum around the plaquetteR, and the gauge-invariant
phase differenceθ(r, r′)− 2πA(r, r′) is taken between−π and+π .

We are interested in the behaviour of vortices in Josephson-junction arrays. Stable
vortices can be explicitly introduced in the initial phase configuration by the application of
a small frustration [17]. The plaquette coordinateR with unit vorticity will be called the
topological vortex coordinate. The voltageV (t) is obtained from

V (t) =
Ly−1∑
y=0

d

dt
[θ(Lx − 1, y)− θ(0, y)]. (8)

The time average ofV (t) is related to the average vortex velocityv = V/2π . The
microscopic dynamics of the vortex motion is reflected in the eddy-current distribution
C(R, t):

C(R, t) =
∑
P(R)

i(r, r′, t) (9)

whereP(R) is the anticlockwise sum over bonds about a dual lattice siteR. The vortex
shows up as a local extremum in the eddy-current distribution.

3. Single-vortex-induced voltage steps

In this section we present the results of our simulations of a single vortex in a Josephson-
junction array. In the first subsection we discuss results for theI–V characteristics. In the
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(a)

(b)

Figure 3. Period doubling on then = 1 step. The results are obtained from a simulation of an
8× 8 array, with the parametersβc = 25, ν = 1/50, iac = 0.10, andidc = 0.13. In (a) we plot
the vortex position versus time. In (b) we plot the eddy currents versus time at three adjacent
plaquettes of the middle column. The continuous, dotted and chain lines are respectively the
first, second and third plaquette in the middle column of the array. The minima in these graphs
indicate the positions of the vortex.

next subsection a detailed description of the single-vortex voltage steps is given. We discuss
the microscopic vortex motion, including its period doubling and the subharmonic single-
vortex voltage steps. This is followed by a comparison of a simple model for vortex motion
to the simulation results, and finally the discussion of possible experimental verification.
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Figure 4. Period doubling on then = 1 step. The parameters are the same as in figure 3.
We show snapshots of the eddy-current distributions at different times. The time step between
two snapshots is 10 (in units of 1/ωc). The eddy-current distributions are smoothed out by
interpolation.

3.1. TheI–V characteristics

The I–V characteristics are generated by gradually increasing the bias currentidc from 0
starting with an initial configuration containing a vortex. We express the voltage in natural
units h̄/2e ≡ 1 and normalized by the frequency 2πν. The harmonic steps then occur at
integer voltage values.

For currents below the depinning currentidp the voltage is zero (see figure 2), when
it is averaged over enough periods of the ac drive. The vortex deforms in response to the
ac+ dc drive, but stays in the same plaquette [23]. Or, for low enough frequencyν and
large enoughiac, it can even oscillate back and forth over a finite number of plaquettes.

The second branch of theI–V characteristic is generated by decreasing the bias current.
As the initial phase configuration one uses the final phase configuration obtained in the
upward sweep. At the retrapping currentirt the average voltage returns to zero. In
underdamped arrays the retrapping currentirt can be different fromidp. This hysteretic
behaviour has often been interpreted as evidence for inertia of the vortex in the dc-driven
case. An example of hysteresis is shown in the inset of figure 2. Focusing the discussion
on the upward current sweep we encounter the first plateau atV = 2πν. This is the first
single-vortex step. The vortex moves on average one plaquette per period. There are two
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more steps visible at multiples of 2πν in figure 2. Aboveidc ≈ 0.25 no steps are visible
any more. The step width has become smaller than the current grid size1idc = 0.01.
The βc = 0 I–V characteristic exhibits a pronounced upward curvature. Hence the vortex
viscosity is non-linear [17]. Between then = 1 andn = 2 steps a small subharmonic step,
at V/2πν = 3

2, is visible in figure 2. On this step the vortex moves three plaquettes every
two periods. Using a smaller1idc = 0.002 one can even observe the4

3 and 5
3 steps.

Increasing the damping parameterβc, for given ν, shifts the steps to higher values of
the current biasidc. This is due to an increase in the vortex viscosity withβc [17]. Whenβc
is changed from 5 to 20, then = 3 step width is gradually reduced to below the current grid
size1idc = 0.01. Forν > 1.0 no integer steps are present any more. For these frequencies
the velocity for which the vortex would phase-lock on the first integer step lies above the
maximum vortex velocity in the array.

The width of a particular step varies in an oscillatory fashion as a function ofiac/2πν.
This is qualitatively similar to the step width behaviour of a single junction, which varies
as a Bessel function ofiac. By adjustingiac one can make more steps visible.

Table 1. The periodicity of the voltagevp averaged over one period of the driving force as a
function of idc. The data are obtained from simulations of an 8× 8 array, with the parameters
βc = 25, ν = 1/50, andiac = 0.10.

Idc Step Period

0.0–0.06 n = 0 1
0.075 2
0.08 4
0.085 8
0.088 16
0.09 ∼ 24
0.095 8
0.10 4
0.105, 0.11 2
0.115 1

0.125 n = 1 4
0.13–0.155 2
0.165–0.19 1

3.2. Single-vortex-induced voltage steps

We now turn to the microscopic vortex motion on the single-vortex voltage steps. We first
consider then = 0 step, i.e. the response of a vortex that is pinned in one plaquette. One
may expect the response to have the same period as the ac drive. In that case the quantity
vp, the voltage averaged over one period of the drive, is constant and equal to zero. We
find, however, thatvp can be non-zero on then = 0 step. This is repeated periodically in
time. In table 1 we show the periodicity ofvp (in units of the driving period) as a function
of idc for an 8× 8 array with the parametersβc = 25, ν = 1/50, iac = 0.1.

Next we focus on then = 1 step in table 1. The vortex depins atidc ≈ 0.12. For
idc = 0.13 the voltagevp alternates between two different values. Figures 3 and 4 show the
corresponding vortex motion. Figure 3(a) shows the topological vortex coordinate, defined
in equation (7), versus time. It shows that the time the vortex spends at one plaquette
alternates between two valuesT1 andT2. The sumT1 + T2 is equal to 2/ν. In figure 3(b)
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Figure 5. Vortex motion on a1
2 step for an 8×32 array, with the parametersβc = 0, ν = 1/25,

iac = 0.10, andidc = 0.11. We plot the eddy current versus time, as in figure 3(b), for two
adjacent plaquettes (denoted by the continuous and the chain lines respectively). The minima
A and B in this graph indicate the positions of the vortex.

we plot the eddy currents of three adjacent plaquettes versus time. In figure 4 we show
snapshots of the spatial distribution of eddy currents. Frames 0 and 10 are almost equivalent.
A jump occurs between frames 2 and 3 and between frames 8 and 9. The difference between
T1 (frames 0–2) andT2 (frames 3–8) is clearly visible. All of the figures show that the
actual vortex motion is periodic with twice the period of the driving force.

Subharmonic steps turn out to be a generic feature of theI–V characteristics of (ac+dc)-
driven arrays. They are observed for different values ofiac, ν, βc and system sizes. Many
different voltage values are possible. We studied a1

2 step in detail. Atidc = 0.11 we
found ann = 1

2 step in aβc = 0, ν = 1/25, 8× 32 array. On this step the generic
behaviour is as follows. Although the vortex deforms significantly during the first period,
the topological vortex coordinate does not change. Only in the second period does it jump
to the neighbouring plaquette. We now describe a typical example. In figure 5 we show
the eddy current versus time of the plaquette containing the vortex. Both curves have two
minima: A and B. In minimum B the vortex has a different shape (and hence feels a
different potential) to that in A. From this we can deduce the following scenario. During
the first period the vortex deforms from configuration A to B, staying in the same plaquette.
In the following period it jumps to the next plaquette into the adjacent minimum A. We
also found a case (idc = 0.072, ν = 1/50) in which the vortex briefly jumped to the next
plaquette (and returned to the original plaquette) during the first period.

3.3. Comparison to a phenomenological model of vortex motion

In this subsection we compare the results of the numerical simulations to the results of a
simple model for the vortex motion. The motion of a single vortex in an array can be
modelled by that of a point particle with massM that, driven by a (Lorentz) forcei, moves
through a sinusoidal pinning potential and experiences a linear viscous damping force with
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constant viscosity coefficientη [9, 10]. The vortex massM can be calculated by equating
the electromagnetic energy stored in the array to a vortex kinetic energy1

2Mẏ
2. The friction

can be determined by equating the dissipated energy toηẏ2. This results in the following
equation of motion for positiony(t), generalized to include a time-dependent driving forcei:

πβcÿ + πẏ + i0 sin 2πy = idc + iac cos 2πνt. (10)

For a square arrayi0 ≈ 0.10 [9]. Every time the particle moves one plaquette (y → y+1),
an integrated 2π voltage pulse is generated across the array in thex-direction. The average
of 2πẏ is then the dimensionless average voltage measured across an array.

We recently introduced a modified vortex equation of motion [17] for dc-driven vortices,
including a non-linear viscosity

M(βc)ÿ + A(βc)ẏ

1+ B(βc)|ẏ| + i0 sin 2πy = idc + iac cos 2πνt. (11)

The parameter values for overdamped case areM(βc) = 0, A ≈ 2.7, B ≈ 1.8, and
i0 = 0.1 [17].

Equations (10) and (11) are similar to the equations describing single Josephson
junctions. To connect to the single-Josephson-junction literature, replacey by a phase
θ = 2πy, divide by i0 and absorb the coefficient in front of the first derivative ofθ in a
new time unit:

βθ̈ + θ̇

1+ Bθ̇ + sinθ = īdc + īac cos�τ (12)

where

β = M(βc) i02π

A2
B = i0

A
B � = νA

i0
īac = iac

i0
īdc = idc

i0
.

To allow for a more quantitative comparison we use the procedure described in reference
[17] to find the parametersA andB in equation (11). That is, we fit theI–V curve in the
dc-driven case to the form√

i2dc − i20
A− B

√
i2dc − i20

.

Given these parameters one can numerically calculate theI–V relationship predicted by
equation (11). In figure 6 we compare these results for one specific set of valuesiac, ν
andβc to theI–V characteristic obtained from simulations of the full array. The results of
equation (11) are in good agreement with the simulation for larger currentsidc > 0.3. For
this current regime the steps are too small with respect to the current grid1idc = 0.01 to
be visible.

For lower currents the agreement is less satisfactory. The steps in the simulations and in
equation (11) do overlap to a large extent, but the lower edge of the steps is underestimated
by equation (11), especially at depinning. However, one finds large deviations when comp-
aring the simulation data to equation (10), the model with linear viscosity.

The phenomenological vortex mass forβc < 35 isM(βc) = 0, as found from the dc
I–V curves in reference [17]. In the dc+ ac case, however, we find small hysteresis loops
in the I–V characteristics. One could interpret this as an indication for the presence of a
non-zeroM(βc). The hysteretic behaviour of equation (11) is complicated. Using a different
M 6= 0 with the computed values ofA(βc) andB(βc) did not yield better agreement with
the simulation results.
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Figure 6. A comparison of results obtained using the model equation (12) (dotted line;
parameters:� = π/5, β = 0.4, and īac = 1.0) and (full line; parameters:� = 0.617,
B = 0.0424,β = 0, andīac = 1.0) to the simulations of the full 16× 32 array (circles;ν = 1

50,
βc = 2, andiac = 0.10).

3.4. Experimental verification

In order to see how the single-vortex phase-locking mechanism would manifest itself
in experimentally accessible conditions, we now reinstate physical dimensions using
experimental parameters [24]. Typical values for the parameters areIc = 0.01–2.0 µA,
IcRn = 300 µV, ωc = 2eRnIc/h̄ ∼ 1 GHz andβc = 10–100. The single-vortex voltage
steps would occur foridc = 0.10–0.30Ic and for frequenciesν < 0.10ωc ∼ 100 MHz, and
βc < 50.

Experiments are conducted at a finite temperature. Voltage steps are observed as a
reduction in the differential resistance dV /dI , while at zero temperature dV /dI = 0
on a step. This reduction should be large enough, and extend over a sufficiently large
current range, in order to be measurable. The temperature is expressed in units of
T0 = h̄Ic/2ekB ≈ 2× 107 Ic. We have performed aT 6= 0 simulation for one particular
case: a 16× 16 array with the parametersν = 1

25, βc = 0, andiac = 0.10. The simulation
was done using the algorithm introduced in reference [25], as extended for arrays [6]. We
found that up toT = 0.004T0 the n = 1 step was clearly visible. ForT = 0.008T0 a
reduction in dV /dI was hardly discernible. This puts an upper bound on the appropriate
temperatures, varying fromT = 1 to 200 mK with the value ofIc.

To study the single-vortex phase-locking phenomena experimentally, one can use
relatively small samples, to make sure that only a small absolute number of vortices are
present at any time, or a large array with a low vortex density. In the former type of
experiment the interaction of the vortex with the boundaries, or equivalently with image
antivortices, has to be taken into account. When moving to a boundary, a vortex may either
escape from the array or reflect as an antivortex [19]. In the parameter regime studied in
this paper, vortices are entering the array and leaving it again at the opposite boundary.
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In practice the small number of vortices present will therefore fluctuate slightly. This may
affect the way in which phase-locking is established as compared to our simulation in
which only one vortex is present at any time. To estimate this effect we have simulated a
finite array in a small magnetic field and also found steps in theI–V characteristics due to
phase-locking with the ac drive at voltages slightly different from those mentioned above.

We also have performed simulations of triangular arrays, often used experimentally,
and find qualitatively the same scenario for the occurrence of single-vortex voltage steps,
as reported in section 3.1.

4. Vortex–antivortex-pair-induced steps

In this section we consider the effect of vortex–antivortex interaction on the single-
vortex voltage steps. In the first subsection we show the fractional voltage steps in the
I–V characteristic due to the vortex–antivortex interaction, and obtain these steps from
a phenomenological model for vortex motion including the logarithmic interaction. In the
second subsection we briefly discuss the analogous behaviour of excess and missing vortices
in a checkerboard ground state of anf = 1

2 array.

Figure 7. The I–V characteristic of a vortex and an antivortex separated by the distances
1x = 4, 5, 7, 8, and 10 in an overdamped dc-driven 32× 32 array. The annihilation current is
the current at which the average voltage drops to zero in theI–V characteristic of the downward
current sweep.

4.1. A vortex–antivortex pair in anf = 0 array

We calculate the zero-temperatureI–V characteristics of an array containing a vortex–
antivortex pair. There is no applied magnetic field, and the pair is included in the initial
configuration by construction [17]. In order to show how one may obtain meaningful results
starting from such a metastable configuration, let us first discuss the case of only a dc drive.
When the applied current is zero, the only mechanism that may prevent the annihilation
of the pair is the pinning of the lattice. Pinning will prevent annihilation if the mutual
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separation is at least eight lattice constants. This minimum distance is in approximate
agreement with the value of 0.10 [9] (in units of the junction critical current) for the
maximum pinning force on a vortex in an infinite system. However, when the current is
non-zero, and the vortices move in different rows (in opposite directions), annihilation may
be absent even when the perpendicular distance between the rows is less than eight lattice
constants, depending on the magnitude of the current. We have studied this stabilization
by the driving force quantitatively by performing downward current sweeps starting from a
number of initial configurations containing pairs with different separation distances1x. The
I–V characteristics are shown in figure 7. When the pair is unstable, and thus annihilated,
the average voltage obtained from the simulations sharply drops to zero. This annihilation
current strongly depends on the separation distance of the pair in the initial configuration.
A higher current is needed to stabilize a smaller pair.

Figure 8. TheI–V characteristic of a vortex–antivortex pair with the separation distance1x = 7
in an overdamped 32×32 array. The ac component of the driving current has frequencyν = 1

25
and amplitudeiac = 0.10. The labelsmP signify the underlying periodicity of the motion on
these steps (i.e. them in equation (5)). In the upper inset we show the spectral function of
the voltage for the 6P step. In the lower inset we show theI–V characteristic obtained from
the model for vortex–antivortex-pair motion in the text. We used the following parameters:
Ly = 32, 2πν = 1.186,B = 0.0674, and1x = 8. Here we plot, instead ofV , Lxω/V . Steps
then arise at the valuesm/n. The highern, the smaller the step width.

Next we consider the behaviour of an (ac+ dc)-driven pair. Since two vortices move
in opposite directions under the influence of the current, their mutual distance will change
in time. Phase-locking can therefore not be established for a voltage corresponding to one
jump per period, since in the next period the environment has changed, and thereby the
interaction strength. We nevertheless find steps in theI–V characteristics of these systems.
Once the vortex and the antivortex have traversedLy/2 plaquettes, they cross each other
again because we have periodic boundary conditions. Phase-locking is established if at that
point the phases are the same again. If phase-lock is established overn traversals, and the
motion is periodic with periodm (in units of the external frequencyν), then the observed
voltage is:V = nLy/m2πν. We can find each of these steps in theI–V characteristic in
figure 8, although for highern the step width decreases rapidly. The step width is typically
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small (∼0.01).
When the vortex and antivortex are separated by a large distance, one would expect

to see single-vortex voltage steps again. This does not occur for the system size that we
considered due to the long range of the interaction. In section 3.2 we considered models
for a single vortex; here we consider a model for a pair. We model the vortex–antivortex
interaction as being logarithmic. In addition we have to take into account the periodic
boundary condition along they-direction: the vortex can see an antivortex behind it and
in front of it (and vice versa). We denote the position of the vortex byy1, and that of the
antivortex byy2. Let the coordinates take the values 06 yi < Ly . The images are then
at yi ± Ly . We only take the direct interaction and the interaction of the nearest image
charge into account (i.e. at a distance less thanLy). The only stable current-driven pairs
in the simulation are the ones that move at a fixed separation1x; we therefore fixed the
separation1x in this model. This leads to the following equation of motion:

η(ẏ1)ẏ1 = +i(t)− id sin(2πy1)− y1− y2

1x2+ (y1− y2)2
+ ε Ly − |y1− y2|

1x2+ (Ly − |y1− y2|)2

η(ẏ2)ẏ2 = −i(t)− id sin(2πy2)+ y1− y2

1x2+ (y1− y2)2
+−ε Ly − |y1− y2|

1x2+ (Ly − |y1− y2|)2
.

Here ε is the sign ofy1 − y2. We have computed theI–V characteristics using these
equations and we did indeed find steps atV = nLy/m2πν. To capture the mechanism
for the pair steps in the model, we found the essential ingredients to be the interaction and
the restriction ofyi to Ly—that is, periodic boundary conditions in they-direction. The
detailed form of the interaction determines the bias currents for which the steps occur.

4.2. Defects in a fully frustratedf = 1
2 array

It was found in [13, 17] that theI–V characteristic of a single excess vortex in a dc-driven
f = 1

2 array resembles that of single vortex in thef = 0 case up to a current ofidc = 0.34.
At the latter current the entire checkerboard of vortices depins, producing a voltage that
is much larger than the single-vortex response. The excess vortex moves in an even more
non-linear viscous fashion than in thef = 0 case [17].

Now we include an ac component in the dc driving current, and we find steps at
V = 2n(2πν). The factor of two can be explained using the scenario proposed in [28]: first
the excess vortex pushes the vortex in front of it to jump, and then follows suit. In total
two jumps have been performed. Small subharmonicV = n(2πν) (n = 1, 3) steps can be
distinguished in theI–V characteristic shown in the inset of figure 9.

We find that theI–V characteristic of an excess vortex and a missing vortex (with
respect to the checkerboard vortex lattice ground state) in thef = 1

2 case is similar to that
of a vortex and an antivortex respectively in thef = 0 case. An excess vortex can be
annihilated by a missing vortex. We calculated theI–V characteristic for different values
of 1x. In theseI–V characteristics one again finds the fractional vortex–antivortex-pair
steps as in thef = 0 case. One observes in figure 9 that as the separation1x becomes
larger, these steps disappear, and the steps corresponding to single vortices grow, as one
would intuitively expect. Finally only the latter remain.

5. Summary and discussion

In this paper we have discussed the phase-locking behaviour of a single vortex and a
vortex–antivortex pair under the influence of an ac+ dc drive. We obtained harmonic and
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Figure 9. I–V characteristics obtained by driving an excess and a missing vortex, separated by
1x, in the vortex lattice of an overdamped fully frustrated 32× 32 array. The ac component
has frequencyν = 1

25 and amplitudeiac = 0.10. The curves are plotted for the separations
1x = 8, 10, 12, 14. In the inset we show anI–V characteristic of an extra vortex moving in the
ground-state vortex lattice of the fully frustrated 16×16 array. The frustration isf = 1

2+ 1
15×16,

and iac = 0.10, ν = 1
50, andβc = 0.

subharmonic single-vortex voltage steps, and studied the microscopic vortex dynamics. We
found period-doubled vortex motion. Then = 1 step corresponds to a vortex jumping one
plaquette per period, since in a periodic array all of the plaquettes in the same column along
the periodic direction are equivalent, and one would expect period-one behaviour. The
simulation, in which period-doubling vortex motion is observed, was performed in an 8×8
array withβc = 25. In this case the vortex motion can excite spin waves [13, 14]. These
spin waves cause a spatially modulated environment for the vortex. Similar phase-locking
is observed in a ring of Josephson junctions [27].

The spin waves may also be responsible for the complicated behaviour of the hysteresis
that we observed in (ac+ dc)-driven arrays as a function ofβc. In recent experiments
subharmonic giant Shapiro steps [3] were observed in over- and underdamped arrays. In
simulations it was shown that one can have such steps in a 2-D array by either including
disorder [6] or inductive effects [7], or generally any mechanism that breaks the translational
invariance of the array. In overdamped single junctions one can only get subharmonics by
using non-sinusoidal current-phase relationships [26]. Our simulations show that a single
vortex itself may phase-lock on subharmonic steps. The simulation of the pair case shows
that single-vortex voltage steps are replaced by fractional steps, which can be understood
in terms of vortex interaction. Unfortunately this insight also makes it manifest why
generalization to the dynamics associated with Shapiro steps that involve many vortices
(such as the axisymmetric coherent vortex states) is not feasible. Another consequence of
the fact that we find subharmonic steps is that a more realistic vortex equation of motion
(than equation (10) and (11)) should contain higher-harmonic corrections to the sinusoidal
potential. The presence of higher harmonics in the potential experienced by vortices was
already noted by Lobbet al [9]. We have shown that the parameters for which single-vortex
voltage steps can be observed are within the reach of present-day experiments.



1828 P H E Tiesinga et al

Acknowledgments
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Doḿınguez D and José J V 1993Phys. Rev.B 48 13 717
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